If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+27.6t-12=0
a = 4.9; b = 27.6; c = -12;
Δ = b2-4ac
Δ = 27.62-4·4.9·(-12)
Δ = 996.96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27.6)-\sqrt{996.96}}{2*4.9}=\frac{-27.6-\sqrt{996.96}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27.6)+\sqrt{996.96}}{2*4.9}=\frac{-27.6+\sqrt{996.96}}{9.8} $
| 2(4x+1)-3=+8 | | 8p=-240 | | w+1/2=w+3w-3/4 | | 58=4+5x | | 4x-21=2(x+3) | | -35+3x=17+5 | | (3/7x5/2)=x3/4 | | 6/11+4=2/11x+16 | | 6x+8x-40=100-6x | | 8×-4y=24 | | -1=x/4-2 | | y=0.24(7)-1.6 | | 64+x-12=2x | | x+2/3=910 | | 21=x+1/5x | | 9.5=4.5+y | | -7-w=-10 | | 12+3x=-9x | | 7x/5x+2=0 | | 46+2x=5x+10 | | 2387=31(p+25) | | 2x-2+x-1=180 | | 15=3m+9 | | 17=2+5x | | 2/15x=-4 | | 3n=(3^2)^8 | | 13=m/4+ 9 | | 13=m4+ 9 | | 128-y=90 | | 9v=162 | | 5x25=125 | | 7x13=13 |